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[1] Recently, a considerable effort has been made to determine the precise displacement
criteria for three-fluid configurations in pores of angular cross section. These
configurations may contain thick conducting fluid layers, such as oil layers residing
between gas in the center and water in the corners of the pore. For pores of uniform, but
arbitrary, wettability and in the absence of contact angle hysteresis, a precise
thermodynamic criterion for the existence of such layers has been established. In this
paper we derive similar criteria for layers in pores of nonuniform wettability, where
additional and more complicated layer configurations arise. The criteria for formation and
removal of layers are consistent with the capillary entry conditions for the accompanying
three-phase bulk displacements, which is essential for accurate pore-scale modeling of
three-phase flow. We consider the particular case of three-phase gas invasion in a star-
shaped pore with a specific choice of interfacial tensions and contact angles. For this case
all possible fluid configurations arise, but only if the water-wet surface in the pore corners
is small.
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1. Introduction

[2] Pore-scale network modeling of multiphase flow, say
water, oil or nonaqueous phase liquid (NAPL) and gas (air),
crucially depends on the entry conditions for displacement
events in individual pores. For two-phase flow in pores with
noncircular cross section, entry pressures for bulk displace-
ments, in the presence of wetting films, can be calculated
using the Mayer, Stowe and Princen (MS-P) theory [Mayer
and Stowe, 1965; Princen, 1969a, 1969b, 1970]. Later
developments have been summarized by Lago and Araujo
[2001]. van Dijke and Sorbie [2003] have extended this
theory, which is based on minimization of the free energy, to
three-phase capillary entry pressures.
[3] Additionally, in three-phase flow layers of the inter-

mediate-wetting phase may form, sandwiched between the
nonwetting bulk phase in the pore center and the wetting
phase in the pore corner, for example oil layers between
bulk gas and water in the corners in a water-wet medium.
These layers may significantly enhance the relative perme-
ability of the layer phase. It is often the case that the flow of

oil during gas injection processes is controlled, at oil
saturations smaller than the water flood residual oil satura-
tion, by drainage of oil through the layers. This means that
stability and conductance of the layers are the main factors
that determine how quickly the oil relative permeability may
decrease during a gas injection process, which obviously
controls the residual oil saturation and rate of oil recovery
[Sahni et al., 1998; DiCarlo et al., 2000; Dong and Chatzis,
2003].
[4] van Dijke et al. [2004] have shown that the phase

pressure combinations associated with displacements of the
intermediate-wetting phase layers can also be calculated
using the (extended) MS-P theory. As a result, for a pore of
given shape and (uniform) arbitrary wettability, the space of
three-phase pressure combinations is uniquely delineated
with respect to the possible pore cross-sectional fluid
occupancies, where the separations are given by the entry
conditions related to either bulk or layer displacements [van
Dijke and Sorbie, 2007]. Using a capillary bundle model,
van Dijke and Sorbie [2007] showed that implementation of
these criteria may have a major effect on the simulation of
three-phase displacements processes, such as NAPL migra-
tion in the unsaturated zone and gas injection for improved
oil recovery.
[5] A further complication arises in pores, which have

undergone a wettability change after primary drainage
[Kovscek et al., 1993]. Combining the MS-P theory for
two-phase displacements in these nonuniformly wetted
pores [Ma et al., 1996; Blunt, 1997], and the three-phase
capillary entry pressures in uniformly wetted pores [van
Dijke and Sorbie, 2003; van Dijke et al., 2004], Piri and
Blunt [2004] and Helland and Skjæveland [2006] calculated
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two-phase and three-phase capillary entry pressures for
piston-like displacements in nonuniformly wetted pores.
The stability of layers arising during these displacements
was assessed using a geometrical layer collapse criterion
[Hui and Blunt, 2000]. Helland and Skjæveland [2006]
implemented the entry conditions for nonuniformly wetted
pores in a capillary bundle model, for which they derived a
set of three-phase capillary pressure-saturation curves. They
found that the pore occupancies and the saturation depen-
dencies of the three-phase capillary pressures (hence the
three-phase relative permeabilities) during gas invasion after
water flooding, varied with the wettability changes after
primary drainage. In fact, pore occupancies and displacement
orders were derived that can never occur for a bundle of
uniformly wetted pores, even when the proper three-phase
entry criteria are implemented [van Dijke and Sorbie, 2007].
[6] As a preliminary to the present paper, van Dijke and

Sorbie [2006] recently derived the thermodynamic criteria
for displacements involving an oil layer sandwiched be-
tween water in the center and in the corners of a nonun-
iformly wetted pore during a two-phase water flood. Entry
conditions for nonuniformly wetted pores have successfully
been implemented in two-phase pore-scale network models
[e.g., Øren et al., 1998; Patzek, 2001; Valvatne and Blunt,
2004], although without the thermodynamic criterion for the
formation and removal of oil layers. Instead the geometrical
layer collapse criterion [Hui and Blunt, 2000] was used.
[7] In existing three-phase pore-scale network models

with (nonuniformly wetted) angular pores [e.g., Fenwick
and Blunt, 1998; Lerdahl et al., 2000; Piri and Blunt,
2005a] only the two-phase capillary entry pressures have
been used, even for displacements involving all three phases.
Geometrical collapse criteria were employed [Fenwick and
Blunt, 1998; Hui and Blunt, 2000; Piri and Blunt, 2004] to
assess the existence of these layers. There are actually three
mechanisms by which layers of the intermediate-wetting
phase may arise in three-phase systems and we describe

these for a water-wet system with oil as the intermediate-
wetting phase. First, the layers may form by bulk gas invasion
into bulk oil, which may leave behind some of the oil,
residing in layers between bulk gas and water in the corners
[DiCarlo et al., 2000]. Second, oil layers may form as a result
of oil invasion into a pore with bulk gas and water in the
corners [e.g., Øren et al., 1992]. This is one of the main
mechanisms that allow recovery of water flood residual oil by
gas injection. Third, oil layers may move alongside bulk gas
during gas invasion into a water-filled pore. Evidence of this
scenario is clear from micromodel experiments [Dong et al.,
1995;Grattoni et al., 1997;Keller et al., 1997; Sohrabi et al.,
2004]. Most existing three-phase pore-scale network models
only include the first mechanism, while Piri and Blunt
[2005a, 2005b] model the first two layer formation scenarios.
They consider layer formation or collapse as a separate
displacement event based on the geometrical criteria. How-
ever, none of the mentioned three-phase network models has
considered the third mechanism, i.e., a displacement event by
which a water-filled pore changes to a configuration with
bulk gas, oil in layers and water in the corners. This
displacement event is discussed in the present paper, alongside
the remainingmechanisms, all based on the corresponding full
thermodynamic criteria, i.e., MS-P theory, although the geo-
metrical criteria continue to play a role.
[8] In summary, the main purpose of this paper is to

derive the proper three-phase flow thermodynamic criteria
for the existence of fluid layers in a nonuniformly wetted
pore and to demonstrate how these fit in with the capillary
entry pressures for the corresponding bulk displacements.
Rather than deriving an abstract general theory, we choose a
specific range of contact angles and the related phase
wetting order, as well as a specific pore geometry, and we
discuss the arising fluid configurations and displacements
with their entry conditions. This example is general enough
to be extended straightforwardly to other cases.

2. Model

2.1. Displacement Scenarios and Pore Fluid
Configurations

[9] As a model pore, we consider a straight tube with a
cross section shaped as a regular three-cornered star, with
corner half angle g � p/6, as shown in Figure 1. After
primary drainage (oil invasion into the water-filled water-
wet pore) the surface in the center of the pore, which was
contacted by oil, has become more oil-wet than the corners
of the pore, where water remains. As an example, Figure 1
shows the possible situation after an increase of the water
pressure, followed by gas invasion. The latter has displaced
most of the oil in the center, leaving oil layers behind.
Below, we describe the possible displacement scenarios
during gas invasion into the different pore fluid occupancies
resulting from a water flood following primary drainage.
[10] The maximum oil-water pressure difference Pow

dr ,
with Pij = Pi � Pj, reached at the end of the primary
drainage process determines the length of contact Ls

dr

(between water and solid) of the corner surface that does
not change wettability. Drainage has taken place at a contact
angle qow

dr (taken as 0).Pow
dr is usually larger than theMS-P oil-

water capillary entry pressure Pow
MSP, for which equation (A9)

provides an explicit expression. For processes following

Figure 1. Cross section of a star-shaped pore with water
wetting layers in the corners, gas in the center, and oil layers
in between. Bold lines indicate surfaces of altered
wettability.
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drainage, we define at the water-wet (unaltered) surface
receding and advancing oil-water contact angles qow,r

w and
qow,a
w . On the oil-wet (altered) surface in the center of the
pore we define qow,r

o and qow,a
o .

[11] A water flood following primary drainage may lead
to pore fluid configurations B, D or A, for which the corner
occupancies are sketched in Figure 2 for subsequently
larger water pressures. More precisely, water invasion in
configuration B may either lead directly to configuration A
(B!A) and the entry condition for the corresponding bulk
displacement is given by Ma et al. [1996] or a bulk
displacement from B to D followed by a layer displacement
from D to A may occur (B!D!A) [Piri and Blunt, 2004;
van Dijke and Sorbie, 2006]. The relevant contact angles
during water invasion are qow,a

w and qow,a
o , where the (outer)

oil-water arc meniscus (ow AM) in the corners is pinned at
the contact length Ls

dr with the hinging angle qow,h satisfying
qow,a
w < qow,h < qow,a

o . We assume that qow,a
o is large enough to

prevent configurations B and D with the outer AM in a
stable position on the oil-wet surface. In fact, presence of
the inner AM in configuration D requires qow,a

o > p/2 + g.
[12] Gas invasion into configurations A, B and Dmay then

lead to the remaining configurations sketched in Figure 2 as
part of the series of displacements indicated below, if we
assume that gas is wetting to water on the oil-wet surface,
i.e., the gas-water contact angles qgw,r

o and qgw,a
o are larger

than p/2. During gas invasion the relevant gas-water angles
are the receding angles qgw,r

w and qgw,r
o , for which we assume

qgw,r
o > p/2 + g and qgw,r

w < qgw,r
o . The former condition

allows presence of the (inner) gw AM on the oil-wet
surface, for example in configuration E. The latter condi-
tion may cause the outer gw AM to be pinned with
hinging angle qgw,h satisfying qgw,r

w < qgw,h < qgw,r
o . Similarly,

we use receding gas-oil contact angles qgo,r
w and qgo,r

o with
qgo,r
o < p/2 � g, to allow the presence of the go AM on the
oil-wet surface and qgo,r

w > qgo,r
o . During gas invasion the

oil-water contact angles are taken from the preceding
water flood.
[13] In general, between the seven configurations sketched

in Figure 2, twenty-one displacements are possible. The
prescription that gas is invading, by increasing the gas
pressure and fixing the oil-water pressure difference, deter-
mines the direction in which the displacements are taking
place (e.g., A!E, rather than E!A), because in principle the
gas volume should increase. Additionally, we assume that gas
invasion does not lead to bulk phase invasion of oil or water,
specifically displacements B!E and B!G, as this would
require a definite change of the oil-water pressure difference.
Starting with occupancies following a water flood (A, B and
D), the displacements A!C, A!E, A!F, A!G, B!C,
B!F, D!C, D!E, D!F and D!Gmay occur. Notice, that
we allow for invasion of a second phase accompanying the
invading gas, specifically an oil layer as in displacements
A!F and A!G, which is well possible when in a porous
medium oil is available in neighboring pores. Since gas
injection into occupancy C cannot lead to qualitatively
different occupancies, for a sufficiently high gas pressure
occupancy C is the final stage for gas invasion. However, for
an increasing gas pressure further displacements from the
remaining occupancies E, F and G are possible, i.e., E!C,
E!F, F!C, G!C, G!E andG!F. This makes a total of 16
possible displacements. Depending on the specific condi-
tions series of displacements may occur, such as A!E!C or
D!G!F!C.
[14] Displacements A!C, B!C, B!F, D!C, D!F,

E!C and G!F involving a change of bulk phase from

Figure 2. Occupancies in corners of a regular star for fluid configurations associated with three-phase
gas invasion, when gas is wetting to water on the surface of altered wettability (bold lines). Occupancy F
corresponds to the fluid configuration of Figure 1.
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water (or oil) to gas have been analyzed in detail by Piri and
Blunt [2004] and Helland and Skjæveland [2006]. Displace-
ment A! E is a two-phase layer displacement, analyzed by
van Dijke and Sorbie [2006]. However, the remaining
displacements have not been studied before, as they all
involve formation or removal of fluid layers during a three-
phase displacement, although the transitions F!C and
G!E have been considered based on a geometrical layer
collapse criterion. Consequently, although configurations E
and G were anticipated before, they could not be produced
during gas invasion using bulk displacement and layer
collapse mechanisms only.
[15] Obviously, higher-order invasion processes, which

may occur during water-alternating-gas injection in oil
recovery or during fluctuation of the groundwater table
around a NAPL spill, may lead to configurations additional
to those sketched in Figure 2. These configurations are the
result of further hysteresis in the prevailing contact angles
[Piri and Blunt, 2004; Helland and Skjæveland, 2006], but
the method of calculating the corresponding displacement
criteria is the same as that outlined below.

2.2. Free Energy Balance

[16] In general, the capillary entry pressures and layer
displacement criteria are calculated from minimization of
the Helmholtz free energy F for a small displacement dx of
the fluids along the pore, where one cross-sectional config-
uration displaces another. The three-phase pressure combi-
nation for which dF = 0 represents the minimum free energy
state [Firoozabadi, 1999] and it constitutes the criterion for
the equilibrium or quasi-static displacement in the pore.
[17] In Figure 3, a slice along the pore, through one corner,

is shown for displacement D!E. The cross-sectional con-
figurations meet at the main terminal meniscus (MTM),
which may consist of several fluid-fluid interfaces separated
by contact lines. For example, in Figure 3, go, gw and ow
interfaces can be found at theMTM. The precise shapes of the
interfaces at the MTM are unknown, but this does not affect
the analysis below, as only the corresponding effective radii
of curvature rij (ij = gw, go, ow) are important. These effective
radii are defined through the pressure differences and the
interfacial tensions sij as

Pij ¼
sij

rij
ð1Þ

and related to each other through Pgw = Pgo + Pow. Far away
from the MTM the interfaces between the various fluids,
i.e., the AMs, can be assumed cylindrical and their effective
radii are identical to their single finite radii of curvature. At
equilibrium the respective effective radii at the MTM and at
the AMs must be the same and they are fixed during the
displacement. Furthermore, at the MTM the interfaces
assume contact angles qij

MTM with the pore wall that are
either receding or advancing, depending on the direction of
the considered displacement, but not hinging. Therefore, if
the corresponding AM contact angles hinge, then these are
different from the MTM angles.
[18] The general equation for the variation of Helmholtz

free energy dF corresponding to an arbitrary three-phase
displacement in a pore is [van Dijke et al., 2004; Piri and
Blunt, 2004]

dF ¼ PgwdVw þ PgodVo þ sgw dAgw � cos qMTM
gw dAws

� �
þ sgo dAgo � cos qMTM

go dAos

� �
þ sowdAow; ð2Þ

where dVI denotes the change of volume of phase i, dAis

denotes the change of the fluid-solid contact area for phases
i, and dAij denotes the change of the fluid-fluid contact area
between phases i and j. For each specific displacement,
expressions for these volume and area changes need to be
determined, as illustrated below. Equation (2) also contains
the MTM contact angles qgw

MTM and qgo
MTM, where the third

possible contact angle qow
MTM follows from the Bartell-Osterhof

equation

sgw cos qgw ¼ sgo cos qgo þ sow cos qow; ð3Þ

applied to the MTM angles. By solving the equation dF = 0
and using equation (1), a functional relation between two of the
effective radii of curvature rij is obtained,which corresponds to
the minimum free energy pressure combination at which the
considered quasi-static displacement occurs [van Dijke and
Sorbie, 2003].
[19] As an example, we give the expressions for the

volume and area changes related to the layer displacement
D ! E shown in Figure 3, i.e.,

dVw ¼ �3 A að Þ rwg; qAM2
wg

� �
� A að Þ

�
rwo; qAM2

wo

�� �n
� 3 A að Þ row; qAM1

ow

� �
� A að Þ rgw; qAM1

gw

� �� �o
dx

dVo ¼ �3 A að Þ rwo; qAM2
wo

� �
� A að Þ row; qAM1

ow

� �� �
dx

dAws ¼ �3 L að Þ
s rwg; qAM2

wg

� �
� L að Þ

s

�
rwo; qAM2

wo

�� �n
�3 L að Þ

s

�
row; qAM1

ow

�
� L að Þ

s rgw; qAM1
gw

� �� �o
dx;

dAos ¼ �3 L að Þ
s rwo; qAM2

wo

� �
� Ldrs

� �
dx

dAgw ¼ 3L
að Þ
f rwg ; qAM2

wg

� �
þ 3L

að Þ
f rgw; qAM1

gw

� �
dx;

dAgo ¼ 0;

dAow ¼ �3 L
að Þ
f rwo; qAM2

wo

� �
þ L

að Þ
f row; qAM1

ow

� �� �
dx

Figure 3. Slice along the pore through one of the corners
for a small movement dx of the main terminal meniscus
(MTM) associated with displacement D!E. The dotted
lines indicate the locations of the two cross sections shown
in Figure 2.

ð4aÞ

(4b)

ð4cÞ
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where the geometrical functions A(a)(rij, qij), Ls
(a)(rij, qij),

Lf
(a)(rij, qij) arising in a corner a are explained in

Appendix A. The superscripts AM1 and AM2 refer to the
outer and inner arc menisci in the corners respectively, as
explained in Figure A1. We solve equation (2) for rgw as a
function of row. Since AM2 arises on the oil-wet surface,
qwo
AM2 = p � qow,a

o , which is taken from the preceding water
flood and qwgAM2 = p � qgw,r

o .
[20] For this displacement at least the ow AM1 is pinned

at the contact length Ls
dr, with the hinging angle qow

AM1 =
qow,h. Assuming that Ls

dr is known from the primary drain-
age process and row from the end of the preceding water
flood, qow,h follows from equation (A1b), with Ls

dr = Ls
(a)

(row, qow,h). Similarly, the gw AM1 may be pinned, but in
this case rgw and qgw,h are both unknown. Therefore we take
equation (A1b) as an additional constraint, i.e.

Ldrs ¼ 2rgw
cos qgw;h þ g
� �
sin g

for qwgw;r < qgw;h < qogw;r ð5Þ

At the MTM the contact angles in equation (2) are qgo
MTM =

qgo,r
o and qgw

MTM = qgw,r
o .

[21] However, it is not a priori known that the gw AM1 is
actually pinned as it could also be present on the water-wet
surface. In this case, the term cos qgwMTM dAws in equation (2)
should be split as cos qgw

MTM dAws = cos qgw,r
w dAws

w + cos qgw,r
o

dAws
o , with

dAw
ws ¼ �3 Ldrs � L að Þ

s rgw; qAM1
gw

� �� �
dx ð6aÞ

dAo
ws ¼ �3 L að Þ

s rwg; qAM2
wg

� �
� L að Þ

s

�
rwo; qAM2

wo

�� �n
�3 L að Þ

s

�
row; qAM1

ow

�
� Ldrs

� �o
dx ð6bÞ

Additionally, for the gw AM1 the appropriate contact angle
would be qgw

AM1 = qgw,r
w .

[22] It follows easily that for displacement D!E AM1
does not enter the water-wet surface with the present choice
of contact angles. Basically, the wo and wg AM2 on the oil-
wet surfaces, which constitute configurations D and E, can
exist only for negative Pow and Pgw respectively, whereas
the possible presence of the AM1 on the water-wet surfaces
requires positive pressure differences. However, for other
displacements the gw AM1 may enter the water-wet sur-
face, for example for displacement F!C.
[23] For completeness, we also give the expressions for

the volume and area changes in equation (2) related to a
bulk displacement, for example for G!F, which involve the
total cross-sectional area A and perimeter Ls

dVw ¼ � A� 3A að Þ rwg; qAM2
wg

� �� �
dx; dVo ¼ 0 ð7aÞ

dAws ¼ � Ls � 3L að Þ
s rwg; qAM2

wg

� �� �
dx; dAos ¼ 0 ð7bÞ

dAgw ¼ 3L
að Þ
f rwg; qAM2

wg

� �
dx; dAgo ¼ 0; dAow ¼ 0 ð7cÞ

It follows that the expression for dF in equation (2) reduces
to the two-phase expression in equation (A8) with ij = gw.
Moreover, because only AM2 is involved, for which the
contact angle does not hinge and is the same as the MTM
angle, i.e., qwg

AM2 = qwg
MTM = p � qgw

MTM, G!F represents a
‘‘classical’’ two-phase MS-P displacement. For this dis-
placement an explicit solution for the capillary entry
pressure, Pgw

MSP = �Pwg
MSP, in this case independent of Pow,

is available, given by equation (A9) with ij = wg.
Furthermore, the same expressions are found for displace-
ment E!C. Similarly, identical expressions arise for
displacements G!E and F!C.
[24] Also for some of the other displacements occurring

during gas invasion explicit solutions are available. B!F is
also a classical two-phase displacement occurring entirely
on the oil-wet surface, whereas D!F is a bulk displacement
(of water by gas) affected by the pressure of the third phase
(oil) [van Dijke and Sorbie, 2003]. Displacement D!G
represents layer invasion on the oil-wet surface [van
Dijke et al., 2004].

2.3. Computational Procedure

[25] For primary drainage the explicit solution for the
capillary entry pressure Pow

MSP is given by equation (A9). For
the water flood displacements B!A, B!D and D!A, the
two-phase expression for dF of equation (A8) applies. For
displacement B!D the explicit solution (A9) is again
found. However, for the remaining displacements a simple
Newton-Raphson method is used to determine the zeros of
dF, i.e., values of row and the accompanying value of qow,h
when relevant [e.g., van Dijke and Sorbie, 2006]. For gas
invasion, we calculate for a series of row (with qow,h)
resulting from the water flood, solutions of dF = 0, also
using a Newton-Raphson method, where equation (5) is
used to determine the possible hinging angles. Because it is
not always certain whether the gw AM1 is actually pinned,
as discussed above, we calculate a threshold value rgw* from
equation (5), i.e., Ls

dr = Ls
(a)(rgw* , qgw,r

w ), at which AM1 is
about to enter the water-wet surface. Then, we take qgw

AM1 =
qgw,r
w if rgw < rgw* and calculate qgw

AM1 = qgw,h from equation (5)
if rgw > rgw* .
[26] Since for most displacements two solutions arise, we

carefully check if the obtained solutions are geometrically
possible. Usually, one of the two solutions is ruled out as it
involves a radius of curvature for one or more of the AMs
that is larger than the corresponding snap-off value, for
which the corresponding pressure criteria are presented in
Appendix A. Furthermore, for configurations involving
layers, we check if the geometrical collapse criteria have
not been violated. These criteria simply state that the AMs
surrounding a layer should not touch and they are derived
from geometrical expressions for the contact lengths as
given in Appendix A.

3. Results and Discussion

[27] We have calculated the entry pressures related to all
16 displacements that may arise during gas invasion using
the following parameters: interfacial tensions are sgw =
30 mN/m, sgo = 10 mN/m, sow = 28 mN/m; relevant
contact angles are qow,a

w = 0.760, qow,a
o = 3.14, qgw,r

w =
0.182, qgw,r

o = 2.22, qgo,r
w = 0.400 and qgo,r

o = 0.200. Notice
that the triple of contact angles for the water-wet contact
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surfaces satisfies the Bartell-Osterhof equation (3) and so
does the triple of angles for the oil-wet surfaces. A small
corner angle of g = p/24� 0.131 is used. The entry pressures
are determined for four different maximum drainage oil-
water pressures relative to the MS-P capillary entry pressure,
i.e., Pow

MSP/Pow
dr = 0.1, Pow

MSP/Pow
dr = 0.3, Pow

MSP/Pow
dr = 0.5 and

Pow
MSP/Pow

dr = 1, where these ratios are proportional to the
contact lengths Ls

dr of the remaining water-wet surface.
[28] In Figure 4, capillary entry pressures and thermody-

namic layer displacement criteria based on equation (2) are
presented in terms of the gas-water pressure differences Pgw

versus the oil-water pressure differences Pow for Pow
MSP/Pow

dr =
0.1. Additionally, the geometrical criteria for the gas layer in

Figure 4. Capillary entry pressures and layer displacement criteria in terms of Pgw versus Pow for gas
invasion when Pow

MSP/Pow
dr = 0.1. Vertical lines indicate criteria for the preceding water flood. Additionally,

geometrical layer and snap-off criteria are indicated as dotted lines in Figures 4a and 4b. The dashed lines
indicate displacement criteria that are excluded for geometrical reasons. Figure 4b is a close-up of
Figure 4a by stretching the vertical axis. Figure 4c shows all the geometrically allowed solutions for the
displacements.
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configuration G and the oil layer in configurations F and G,
as well as the snap-off criteria for the water-gas and gas-oil
AM2 are included in Figures 4a and 4b. The pressure
differences have been normalized through multiplication
by rin/sij, making these identical to the normalized curva-
tures of the corresponding interfaces.
[29] With Figure 4a we demonstrate first how the geo-

metrical criteria, including snap-off, restrict the existence of
the configurations with layers, E, F and G, as well as the
corresponding displacements. For the oil layer removal
displacement G!E two possible solutions arise as indicated
in Figure 4. However, the geometrical layer criterion for the
oil layer in configuration G (and configuration F), given by
equation (A6) excludes the larger solution. Similarly, two
solutions for the gas layer invasion displacement D!G
arise, of which the lower is excluded by the criterion for the
gas layer in configuration G, given by equation (A7). For
the bulk gas displacement B!F, leading to the formation of
an oil layer, the lower solution is excluded based on the
snap-off criterion for the gas-oil AM in configuration F,
given by equation (A4). If we also include the snap-off
criterion for the water-gas AM2, we find that the pressure
combinations where configuration G is allowed, based on
geometrical criteria alone, are very limited indeed. It fol-
lows similarly that the pressure combinations for which
configuration F can exist is also limited, but less restricted
than for configuration G. The geometrical criterion for the
gas layer in configuration E, given by equation (A5), is
approximately Pgw

geom = �7.00, which is not very restrictive
compared to other criteria. We have used the corresponding
criteria for all other displacements to find the unique
geometrically possible solution.
[30] Figure 4a already reveals some of the consistent

crossovers of the displacement criteria. For example, the
criteria for displacements A!E, A!G and G!E intersect
(twice), in exactly the same point. As demonstrated by van
Dijke and Sorbie [2007], this indicates that around these
crossovers the free energies of the corresponding occupan-
cies (A, G and E) are ordered, such that there is a unique
relation between these occupancies and the three-phase
pressure combinations, here the pressure differences (Pow,
Pgw). This consistency is a direct consequence of the
Bartell-Osterhof equation (3). In Figure 4b, solutions have
been added that show up close to those relating to displace-
ments A!C and G!F, showing all the corresponding
consistent crossovers. Observe that consistent intersections
of four criteria occur (twice) for displacements E!F, G!C,
G!E and G!F. Because of the geometric layer criterion
for the oil layer in configurations F and G, the solutions and
corresponding crossovers to the left of the criterion (lower
Pow) are no longer relevant.
[31] In Figure 4c all displacement criteria corresponding

to configurations that are geometrically allowed are pre-
sented. We mainly consider negative values of Pow, since all
the water-flood displacements (B!A, B!D and D!A)
have occurred for negative Pow. All three-phase entry
pressures have negative Pgw, apart from those associated
with displacements B!C, B!F and G!E (F!C), for
large Pow. The latter means that, only for these displace-
ments, the (hinging) contact angle at the outer gw AM1
qgw
AM1 in configurations E (or C) is smaller than p/2, which is
perfectly reasonable for configuration C. For even larger

Pgw the gw AM1 may enter the water-wet surface, as
discussed in section 2.2.
[32] Next, we work out which entry pressures and cross-

overs are actually relevant during gas invasion following a
water flood. The vertical lines represent the water flood
entry pressures. A water flood, in which Pow decreases,
starting with configuration B at large Pow will first lead to
configuration D, at B!D and subsequently to configuration
A at D!A rendering B!A irrelevant. The geometrical
criterion for the oil layer, given by equation (A5) is
approximately Pow

geom = �12.3, which is far less restrictive
than the thermodynamic criterion for displacement D!A at
Pow = �6.67 [van Dijke and Sorbie, 2007], below which
configuration D can no longer exist.
[33] Gas invasion is represented by increasing Pgw, start-

ing from a very small value, at a constant Pow. For example
at Pow = �4 the two-phase oil water configuration is D,
hence during increase of Pgw the displacement ‘‘away from
D’’ with the lowest entry pressure is D!G. Having arrived
at G, the lowest entry pressure ‘‘away from G’’ is G!F.
Finally, the lowest entry pressure ‘‘away from F’’ is F!C
(i.e., G!E). In effect, we have found the displacement
series D!G!F!C. Similarly, if we start at Pow = �1 the
two-phase oil water configuration is B. In the corresponding
regime, which also extends to positive Pow, the lowest entry
pressure displacement ‘‘away from B’’ is B!F, followed
by F!C (at positive Pgw), yielding B!F!C. If we start at
Pow =�7, the two-phase oil water configuration is A and the
series A!E!C is found. For a very low oil-water pressure,
say Pow = �11, Figures 4a and 4b suggest that the series
A!G!F!C results, but because configurations F and G
are geometrically disallowed, the first allowed solution
greater than A!G, i.e., A!E, prevails, followed again by
E!C (rather than E!F). This process of finding the lowest
entry pressures can be formalized using the ordering of the
free energies for all possible pairs of fluid configurations
[van Dijke and Sorbie, 2007]. It may be clear that the
(relevant) consistent crossovers delineate the pressure space
with respect to the different possible displacement series.
[34] After examination of all possible displacement paths

between the various crossovers, we present in Figure 5a the
delineation of the (Pow, Pgw) space with respect to the
different configurations of Figure 2. Entry conditions that
are not relevant for any pressure combination, such as B!C
have been removed. Notice the various remaining relevant
crossovers, which all separate 3 configurations, except the
crossover of 4 solutions, which separates 4 configurations
(C, E, F and G), although two of the solutions (E!F and
G!C) are not relevant at all. Figure 5a reveals that
transition between configurations G to C is mediated by
either configuration E (for lower Pow) or by configuration F
(for higher Pow), whereas a direct transition from G!C only
takes place at the crossover.
[35] We conclude that for this high Pow

dr = 10Pow
MSP, where

there is only a small water-wet surface and little water left in
the pore corners, (in combination with the small corner half
angle) a complicated set of entry pressures arises, in which
all 7 possible configurations of Figure 2 occur. In particular,
configurations E and G are present, although they are only
intermediate configurations during a gas invasion process.
Notice also that the existence of configuration G, with both
a gas and an oil layer, is limited by the layer displacements
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D ! G and G ! E, as well as the bulk phase displacement
G ! F. Comparison with Figure 4a reveals that each of
these displacement criteria are stricter than the relevant
geometric and snap-off criteria, thereby further reducing
the pressure combinations (Pow, Pgw) for which configura-
tion G can exist. A similar conclusion can be drawn about
the three-phase layer configuration F.
[36] In Figure 5b the delineation of the (Pow, Pgw) space is

presented for Pow
MSP/Pow

dr = 0.3. In this situation a range of
Pow arises where the two-phase oil-water configuration D
can still occur. However, in this range the entry pressures for
D!E and D!G are now higher than for D!C and
D!F, favoring the latter displacements. Comparison of
Figures 5a and 5b shows that for low Pow, where essentially
only two-phase gas-water configurations can occur (A, C or
E), configuration E with gas layers becomes unfavorable
when Pow

dr decreases, i.e., when a larger portion of the corner
becomes water-wet. Furthermore, it may be clear that a
necessary condition for the existence of the three-phase
configuration G with both gas and oil layers is that both
possible two-phase configurations with oil and gas layers,
D and E respectively, should be allowed.
[37] In Figure 5c the delineation of the (Pow, Pgw) space is

presented for Pow
MSP/Pow

dr = 0.5. For this relatively low Pow
dr the

only possible oil-water configurations are A and B, thus
further reducing the number of possible configurations. In
particular, for high Pow it is surprising to find that gas
invasion still involves configuration F with an oil layer, as
opposed to the direct displacement B!C. Furthermore, for
low Pow we find that also displacement A!F occurs,
contrary to situations with less water in the corners. How-

ever, comparison of Figures 5b and 5c reveal that the actual
size of the window of (Pow, Pgw) in which configuration F
can occur has decreased with decreasing Pow

dr . Obviously,
displacement A!F, in which a bulk gas displacement drags
in an oil layer, can only occur in a porous medium if oil is
available in neighboring pores.
[38] Finally, in Figure 5d the delineation of the (Pow, Pgw)

space is presented for Pow
MSP/Pow

dr = 1.0, i.e., when drainage
has not proceeded beyond the oil-water entry condition. In
this situation the entry pressures for displacements A!C
and B!C are lower than those for displacements A!F and
B!F respectively, thus excluding configuration F.

4. Conclusions

[39] We have derived the thermodynamic pressure criteria
for formation and removal of fluid layers during three-phase
flow in an angular pore of nonuniform wettability, embed-
ded in the general theory of deriving three-phase capillary
entry pressures for bulk displacements. We have considered
the particular case of three-phase gas invasion in a star
shaped pore and a particular choice of interfacial tensions
and contact angles. The latter have been chosen, such that
gas is wetting to water on the surface of altered wettability.
This has led to the most complicated combination of pore
fluid configurations possible, which makes this case general
enough to be extended straightforwardly to other cases.
[40] Conclusions are as follows: 1. The pressure criteria

for layer displacements are consistent with the entry
pressures for bulk displacements, for the described dis-
placement history, here gas invasion following a water
flood. This leads to a unique delineation of the space of

Figure 5. Delineation of the (Pow, Pgw) space with respect to the various configurations as presented in
Figure 2 using the bold lines for the relevant parts of the displacement criteria for (a) Pow

MSP/Pow
dr = 0.1,

(b) Pow
MSP/Pow

dr = 0.3, (c) Pow
MSP/Pow

dr = 0.5, and (d) Pow
MSP/Pow

dr = 1.0.
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pressure combinations with respect to the possible fluid
configurations. 2. Only for a large drainage pressure, i.e.,
when the remaining water-wet surface in the pore corners
is small, can all possible fluid configurations arise, in
particular the configuration in which both a gas and an oil
layer occur. 3. The thermodynamic criteria for the exis-
tence of layers in three-phase fluid configurations are
much more restrictive than existing geometrical criteria.
4. Bulk gas invasion into a water-filled pore may be
accompanied by invasion of an oil layer.
[41] Obviously, the full implications of the criteria will

become evident after they have been implemented in a pore-
scale network model.

Appendix A: Pore Geometry, Geometrical
Criteria and Two-Phase Capillary Entry Pressures

[42] For the star-shaped pore cross section of Figure 1
the cross-sectional area and perimeter are given as A =
3
ffiffi
3

p

2
sin p

3
þgð Þ

sin g
rin
2 and Ls = 3

ffiffi
3

p

sin grin, respectively, where rin

denotes the inscribed radius. The areas and contact lengths
in each corner a are defined as

A að Þ ¼ r2 qþ g að Þ � p
2
þ cos q

cos qþ g að Þ� �
sin g að Þ

 !
ðA1aÞ

L að Þ
s ¼ 2r

cos qþ g að Þ� �
sin g að Þ ðA1bÞ

L
að Þ
f ¼ 2r

p
2
� q� g að Þ

� �
ðA1cÞ

with A(a)(rij, qij) = Aij
(a), Ls

(a)(rij, qij) = Ls,ij
(a), Lf

(a)(rij, qij) = Lf,ij
(a),

which are explained in Figure A1a. Notice that for the
regular star, g(a) = g is the same for all corners. We adopt
the convention that qij is measured through phase j (second
index), while rij is defined positive when pointing into
phase i (first index) and negative when pointing into phase j.
The latter is the case for AM 1 in Figure A1b. For example
for AM2 in configuration E, Figure A1b explains that

L að Þ
s rwg ; qwg;2
� �

¼ 2rgw
cos qgw;2 � g
� �
sin g

ðA2Þ

additionally using that rji = �rij and qji = p � qij.
[43] AM1 can exist only if qij,1 � qij,1

sn (see Figure A1b),
where qij,1

sn denotes the angle at which snap-off of AM1
occurs. qij,1

sn = qij,1
o , where qij,1

o is the value of qij,1 at the oil-
wet surface, or qij,1

sn = p � g(a) if the latter is smaller than
qij,1
o [Blunt, 1997]. The corresponding snap-off pressure
difference Pij

sn follows from equations (1) and (5) as

Psn
ij ¼ 2sij

Ldrs

cos qsnij;1 þ g
� �
sin g

; ðA3Þ

where AM1 does exist only if Pij 
 Pij
sn.

[44] AM2 can exist only if qij,2 � (p/2) � g, where we
use the ordering of indices as in Figure A1a. Furthermore,
the corresponding radius of curvature rij must be smaller
than rin, which is the equivalent to Ls

(a) = Ls/3 for the three-
cornered star. The corresponding pressure difference fol-
lows from equation (A1b) as

Psn
ij ¼ 2sij

rin

cos qij;2 þ g
� �
ffiffiffi
3

p : ðA4Þ

where AM2 exists only if Pij � Pij
sn.

Figure A1. (a) Cross-sectional area Aij
(a) occupied by phase j in corner a in the presence of bulk phase i,

where the lengths of the surrounding fluid-solid and fluid-fluid contact lines are indicated as Ls,ij
(a) and Lf,ij

(a),
respectively. (b) Definitions of these areas and the corresponding contact angles for a pinned AM1 with
negative curvature and an AM2 with reversed indices.
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[45] In addition to the snap-off criteria, which apply to
individual AMs, geometric criteria for the existence of the
layers apply. The two-phase gas or oil layer between water
and water, present in configurations C and D, respectively,

can exist only if the surrounding AMs do not touch. The
corresponding geometrical layer collapse pressure differ-
ence Piw

geom follows from equations (5) and (A1b), using
some elementary trigonometry [Øren et al., 1998] as

P
geom
iw ¼

2siw cos qiw;h þ g
� �

Ldrs sin g
; ðA5Þ

where cos qiw,h = cos (~qiw + g) + 2sin g for i = g, o, with ~qow =
qow,a
o and ~qgw = qgw,r

o . The layer exists only if Piw 
 Piw
geom.

[46] The geometrical criterion for the oil layer between
gas and water, present in configurations F and G, can be
formulated in terms of a gas-water pressure difference Pgw

geom

as a function of Pow (assuming that the AMs touch at their
centers, since qgo,r

o < qow,h) [Hui and Blunt, 2000; Piri and
Blunt, 2004] as

Pgeom
gw ¼ Pow

sgo

sow

cos qogo;r � sin g

cos qow;h � sin g


 �
þ 1


 �
; ðA6Þ

where

cos qow;h þ g
� �

¼ Pow

sow

Ldrs
2

sin g:

The layer exists only if Pgw � Pgw
geom. The geometrical

criterion for the gas layer between water and oil, present in
configuration G (assuming that the AMs touch at the pore
walls, since qgo,r

o < p � qgw,r
o ) [Fenwick and Blunt, 1998] is

given by

Pgeom
gw ¼ Pow

�
1� sgo

sgw

cos qogo;r þ g
� �

cos qogw;r � g
� �

2
4

3
5: ðA7Þ

The layer exists only if Pgw 
 Pgw
geom.

[47] For completeness we also give the ‘‘classical’’ analyt-
ical solution of the equation dF = 0 for a two-phase displace-
ment. For a general two-phase displacement, equation (2)
reduces to

dF ¼ PijdVj þ sij dAij � cos qMTM
ij dAjs

� �
ðA8Þ

with i, j = g, o, w and i 6¼ j. The classical solution can be
found when the same (nonhinging) contact angle qij arises at
the MTM and at the single (relevant) AM in each corner,

such as during primary drainage or for example for
displacement G!F. For the three-cornered star this solution
is given as the method of standard porosimetry capillary
entry pressure

PMSP
ij ¼ sij

rin

cos qij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 qij �

2ffiffiffi
3

p sin
p
3
þ g

� �
sin g qij þ g � p

2
þ cos qij

cos qij þ g
� �
sin g


 �s

sin
p
3
þ g

� � ðA9Þ

This expression reduces to that for an equilateral triangle
when g = p/6 [e.g., Ma et al., 1996; Lago and Araujo,
2001].
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